Home
Science & History
Print|Email|Text Size: ||
Scientists Searching for Clues to The First Dog
Village dogs’ genetic code may hold clues to canine evolution and health
Pages:

Pages

Like classic twin studies that investigate the interplay of nature and nurture, comparing the genome of village dogs to modern dogs may help disentangle the long-term evolutionary effects of genetic and environmental influences.

Mastiff to Min-Pin, Corgi to street cur: all dogs share the same set of roughly 20,000 genes. What makes one dog different from another—or, in the case of purebreds, almost the same— is how the genes are expressed and restricted from being expressed, and how they communicate with one another. Therefore, it may be safe to say that each of the world’s 800 to 900 million dogs is a distinct combination of different versions of the same genes. Or maybe not. At least, that’s what some scientists suspect, and they think they’ll find answers in the DNA of the ubiquitous, free-ranging canine outcasts that populate developing countries throughout the world.

While village dogs were being socially shunned, modern dogs—a subpopulation that likely split off from village dogs thousands of years ago—were serving society. So tightly woven into the fabric of our lives that we rarely think of them as human-engineered, dogs have been refined for increasingly specialized tasks such as hunting, transportation, protection, warfare, ornament and companionship. As a result of rigorous artificial selection over a long period of time, many of their ancestral gene variants are suppressed. Some have disappeared altogether, creating a fragile homozygous genome that has little diversity.

In contrast, village dogs are barely tolerated by society. Although considered a domestic species, they are the products of thousands of years of natural selection. Consequently, their heterozygous genomes are robust and extremely diverse. In addition, it’s possible that long after modern dogs branched off from the family tree, some village dog populations may have developed new gene variants that protect their immune systems.

Evolutionary biologist Adam Boyko, assistant professor in the Department of Biomedical Sciences at the Cornell University College of Veterinary Medicine, is confident that comparing and contrasting the two branches of the domestic canine family tree will provide answers to some of the mysteries that continue to surround the evolution of the domestic dog: When and where were dogs domesticated? What were the global migration paths of humans and dogs? What genetic changes occurred when wolves became dogs? Which genes are responsible for extreme size, shape and behavior differences? What are the underlying causes of genetic diseases? And how do parasites have an impact on canine well-being?

As a postdoctoral student at Cornell, Boyko worked under the tutelage of Carlos Bustamante, now professor of genetics at the Stanford School of Medicine. Curious about how the underappreciated and even less-studied village dog genome might reframe our current understanding of canine evolution and domestication, Boyko and Bustamante persuaded Ryan and Cori Boyko (Boyko’s brother and sister-in-law, who were then both graduate students in anthropology at the University of California, Davis) to add a few side trips to their otherwise romantic African honeymoon. Their instructions were to catch semi-feral, uncooperative village dogs and draw blood samples, then ship the samples back to the lab for analysis. Information from the preliminary DNA samples indicate that the researchers are on the right track. I asked Dr. Boyko about his research, and if it has future application to invigorating the health of our companion dogs.
 


Jane Brackman: How will mapping the genome of the village dog help us understand the mechanisms of traits in modern dog breeds?

Adam Boyko: Geneticists have spent a lot of time looking at purebred dogs. When something is selected for, either by natural or artificial selection in a population, geneticists can tell because of the patterns that are left in the genomes of individuals in those populations. In humans, for example, we can clearly see that lactase persistence, the ability to digest milk into adulthood, was selected for in some populations.

Pages:

Pages

Print|Email

More From The Bark

By
Michael W. Fox
By
Amy Young
By
Jane Brackman
More in Science & History:
Freud Sang to His Dog
Myths: Loyalty Rewarded
Body Language
Is Your Dog Waiting For You?
The Wolf in Your Dog
Alexandra Horowitz, The Canine Mindseeker
DNA Testing
Buffon
Can DNA Decipher the Mix?